Event-driven simulations of a plastic, spiking neural network.
نویسندگان
چکیده
We consider a fully connected network of leaky integrate-and-fire neurons with spike-timing-dependent plasticity. The plasticity is controlled by a parameter representing the expected weight of a synapse between neurons that are firing randomly with the same mean frequency. For low values of the plasticity parameter, the activities of the system are dominated by noise, while large values of the plasticity parameter lead to self-sustaining activity in the network. We perform event-driven simulations on finite-size networks with up to 128 neurons to find the stationary synaptic weight conformations for different values of the plasticity parameter. In both the low- and high-activity regimes, the synaptic weights are narrowly distributed around the plasticity parameter value consistent with the predictions of mean-field theory. However, the distribution broadens in the transition region between the two regimes, representing emergent network structures. Using a pseudophysical approach for visualization, we show that the emergent structures are of "path" or "hub" type, observed at different values of the plasticity parameter in the transition region.
منابع مشابه
FNS: an event-driven spiking neural network framework for efficient simulations of large-scale brain models
Limitations in processing capabilities and memory of today’s computers make spiking neuron-based (human) whole-brain simulations inevitably characterized by a compromise between bio-plausibility and computational cost. It translates into brain models composed of a reduced number of neurons and a simplified neuron’s mathematical model. Taking advantage of the sparse character of brain-like compu...
متن کاملEvent-driven simulation of neural population synchronization facilitated by electrical coupling
Most neural communication and processing tasks are driven by spikes. This has enabled the application of the event-driven simulation schemes. However the simulation of spiking neural networks based on complex models that cannot be simplified to analytical expressions (requiring numerical calculation) is very time consuming. Here we describe briefly an event-driven simulation scheme that uses pr...
متن کاملEvent-Driven Simulations of Nonlinear Integrate-and-Fire Neurons
Event-driven strategies have been used to simulate spiking neural networks exactly. Previous work is limited to linear integrate-and-fire neurons. In this note, we extend event-driven schemes to a class of nonlinear integrate-and-fire models. Results are presented for the quadratic integrate-and-fire model with instantaneous or exponential synaptic currents. Extensions to conductance-based curr...
متن کاملEfficient Event-Driven Simulation of Large Networks of Spiking Neurons and Dynamical Synapses
A simulation procedure is described for making feasible large-scale simulations of recurrent neural networks of spiking neurons and plastic synapses. The procedure is applicable if the dynamic variables of both neurons and synapses evolve deterministically between any two successive spikes. Spikes introduce jumps in these variables, and since spike trains are typically noisy, spikes introduce s...
متن کاملDistributed, Event Driven Simulation of Spiking Neural Networks
We present the architecture of a simulator that is able to simulate large networks of spiking neurons using a distributed event driven simulation. Contrary to a time driven simulation, which is usually used to simulate spiking neural networks, our simulation needs less computational resources because of the low average activity of typical networks. The simulator is divided into a set of communi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 84 3 Pt 1 شماره
صفحات -
تاریخ انتشار 2011